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INTRODUCTION

This report is concerned with the application of the elements of
quantum (wave) mechanics to some special problems in the field of macro-
scopic fluid dynamics {(mechanics), often referred to as classical fluid
dynamics. In particular, considerations will be on flow of a viscous
imcompressible fluid around a circular cylinder. The presentation is
divided into three sections: Section 1 constitutes a brief presentation
of the flow of a nonviscous fluid around a circular cylinder. Attention
is called to the fundamental concepts in any frictionless fluid flow such
as velocity potential, stream function and so on, Section 2 presents a
brief discussion of the restrictions imposed upon the stream function by
the number of dimensions of space in which one usually operates (two in
contrast to three), by the differences between stream function in two-
and three-dimensional flows, and by the selection, as in the present
case, of the two-dimensional space representation. The third section
presents in detail the flow past three-dimensional bodies in a viscous

fluid, particularly past a circular cylinder in the symmetrical case.



1. FLOW AROUND THREE-DIMENSIONAL BODIES--FRICTIONLESS
FLUID FLOW

1.1. Characteristic Functions of the Flow
The part of fluid flow theory dealing with the characteristic functions

of the non-viscid frictionless fluid flow with no heat conductivity is
usually well understood by most scientists ) physiAcists , engineers, and
chemists and very little remains to be added. It appears desirable to
call attention to a few of the most characteristic- laws and functions which
are valid and widely used in the field of frictionless fluid flows. Subse-
quently, these laws and functions are extended to and used in the field
of viscous and heat-conductive fluid flows with possibly small modifications _.
and adjustments, wherever they may become necessary. The mos't- .
significant laws, rules and functions in the frictionless flu;d flows are:

a. conservation of mé.ss -(or the contin’uify equafion);

b. conservation of momentum; -

¢. irrotationality;

d. wvelocity potential;

e. relation between the irrotationality and the existence

of the potential function; |

f. conservation of energy.
The stream function requires a different deﬁnit'io-n for two-dimensionél
flows and a different one for three-dimensional flows. A streamline,
however, is defined in the same maﬁner for either two- or three-dimensional
flow; viz., a continuous line through the fluid such that it has the direction
of the velocity at every point throﬁghout Vits length. The differential

equation for a streamline in three-dimensional flow is:

dx/u = dy/v = dz /w3 | {1.1.1)
whereas in two-dimensional flow the form is:

dx/u = dy/v. _ | (1.1.2)
In two-dimensional flow the concept of the stream function, ¢ ={ (x,y), gives

u = =8/9y; v = 8 /9x; du/dy = av/dx; (1.1.3)
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and finally for the irrotational flow case:

82y /0x> + 8% /oy% = vAy = 0, (1.1.4)

where the symbol vz denotes the laplace operator (Laplacian).

2. SOME CHARACTERISTIC FUNCTIONS FOR TWO=- AND THREE-
DIMENSIONAL FLOWS

2.1. Stream Function in Two=-Dimensional Flow

The stream function requires a different definition for two-
dimensional flow from that for three-dimensional flow. One of the most
useful definitions of the two-dimensional stream functions is that the
partial derivative of the stream function with respect to any direction is
the velocity component plus 90 degrees {counterclockwise} to the direction
of flow. (Streeter, p. 39). In addition it must satisfy the continuity equation.
The first part of Equation (1.1.3), i.e., u=..., v=..., is true whether
the flow has rotation or not. For irrotational flow, however, the second
part of Equation (1.1.3) and Equation (1.1.4) are true. In particular,
Equation (1.1, 4) shows that the stream function may be constructed as
the velocity potential for some other flow (Streeter, p. 39). Relations
between stream function, {, and velocity potential, ¢, are found by_

equating the expressions for the velocity components:
0¢/8x = By/By; 8/8y = -8y/ox. {(2.1.1)

2,2, Stream Function in Three-Dimensional Flow

Again, all of the details of three-dimensional flow will not be
presented, only those which may be pertinent to the specific problem of
the present report. The calculation of the stream function in three-
dimensional flow requires much more effort and energy than that for the
two-dimensional case. Of special interest and value is the Stokes'
stream function defined only for those three-dimensional flow éases which
have axial symmetry.

The above discussion demonstrates clearly the advantages of using
the two-dimensional flow representation over three-dimensional flow
representation, even in the cases where the actual flow in the physical
space is geometrically expressed as a space phenomenon, The following

representation of the flow phenomena in the viscous, incompressible



fluid in a three-dimensional space configuration will only use those
analytical methods which give the mathematical description in terms of

two independent variables.

3, FLOW PAST THREE-DIMENSIONAL BODIES IN VISCOUS
INCOMPRESSIBLE FLUID

3.1. Flow Past a Circular Cylinder--Symmetrical Case

Flows past three-dimensional symmetricé.l bodies, in particular
flow past a circular cylinder in a symmetrical configuration, will be the
first case to be considered. The flow in the boundary layer past a
circular cylinder in the symmetrical case is known from the literature,
and the solution functions used here are taken from Schlichi.:ing‘, pp. 150-152,
The free stream velocity U_ is parallel to x-axis, and one begins with the
ideal velocity distribution in "potential irrotational flow past a circular
cylinder of radius R and free stream velocity U,. In general, when one
considers the flow past a cylinder in the sym‘metrical case, one may use
the so-called Blasius series. According to Blasius, the potential flow

-is given by the series:

- wx 3 5 7 9 11 . |
U(x)—g1x+u3x + ugx +ouox +u9x +?‘llx + e (3.1.1)
where the coefficients Use Mgy v oes depend only upon the shape of the body
and are to be considered known_. The pressure term in the boundary layer

can be easily calculated for the -stationary condition and becomes:
~1
-p dp/dx = U dU/dx ; = constant; (3.1,2)

2 3 5 2
UdU/dx = uyx + 4u1u3x +x (6 uug + 3 u3)

+x9(10uu + 10 u,u +5u2

7
+x(8u1u +8u,u 1%g 34 5)

7 3Y5)

11
+x (12 ulu11+ 12 u3u9+13u5u7)+... ; - {3.1.3)
where the continuity equation is integrated with the use of the stream
function ¢ = li(%,y). A suitable assumption for the coefficients of the
stream function and hence for the velocity components remains to be
made. For the general case, Blasius proposed the form for yfx,y), u

and v with the standard boundary condition (y =0, u=v =0, y =@,



The case treated in this work refers to the boundary layer on a
cylindrical body placed in a stream which is perpendicular to its axis
(this axis will be denoted as the z-axis, perpendicular to the plane (x,y)
in which the flow actually takes place). Thus the flow is considered to
be two-dimensional in the (x,y) plane. In either case the velocity of the
potential flow 1s assumed to have the form of a power series in x, where
1y denotes the distance from the stagnation point measured along the
contour of the cylinder. In the Blasius series, the velocity profile in
the boundary layer is also represented as a power-series in X, with the
coefficients assumed to be functions of the coordinate vy, measured at
right angles to the wall; i.e., to the surface of the cylinder.

The form is: '

Utx) = 2 U_ sin ¢ = 2 U sin (x R™), (3.1.4)

and by expanding in a power series it becomes:

Utx) =2 U_ [ (x R™Y) - %—5 = rYH 4 é x R™YH>

l)7+..,f.]; (3.1.5)

-1)1/2 is:

1 -
='.:l',-*: (XR

the stream function with n =y Ru1 (2 U Rv

1,172 3 5 |
G = (vul ) / {ulel(n}+4u3x f3('q)+6u5x f5 {n)
+ 8w £.(n) 4 10 uax” fo(n) + 12 upx £ () +.ne b
7% 1IN 9* 1o\ p* T e Jo
(3. 1. 6)
the functions u are:
-1 2 -3 2 -5
ul = Z(UCDR ) ; u3 = “'3'1 UmR ;u5 ="5": UCDR H uea; (33107}
and the velocity u UC;I is given by:
-1 -, A4 -13 6 -1.5
wU_ " =2{(xR VI - ) R £15 4 {5y) R )T g
B8 -
- {=,) bR 17 RS (3.1.8)

where the functions f‘n are called the functional coefficients,



In order to render the functional coefficients independent of the

particular properties of the profile, i.e., of u, u , it is necessary

EUREY
to split them as follows { for i 2 5):

'frs =g'g +(10/3)hrg; | | (3.1.9)

f,=g'; + TR, + (70/3) k' ‘ (3.1.10)
flgzg'9+12h'9+(126/5) kig +84j'g+280a'g; (3.1.11)
flo=8p+ (155/3) hiy) + 66k, +220 ', + 462q'; ... 3 (3.1.12)

where all the functions shown are tabulated in Schlichting's work. The
usefulness of the Bl"asiu‘s' method is restricted By the fact that it should
not be used for slender bodies. Other attempts on the problem have been
made by Goldstein, Hiemanz, Goertler and others. For a circular .
cylinder of diameter d = 9.74 cm in a stream of velocity u, = 19 em sec'_'l,

1. 1.85x1 04, Hiemanz found that his experiment gave values

Re = uod v
for u which ¢ould be represented.sufficiently accurately by three terms

of the series for the potential ﬂqw. Due to the fact that the function fn(q)
are tabulated in Schlichting's work, this research will use the Schlichting

data throughout the report (see Schlichting, p. 152 to p. 154 after remodeling).

3.2. Forms Used in the Analysis

Stream function

- -1_.3
v=@v U, V2R 0 m - 5 ® 10’ )
- ‘ - 10 -1_.9 .
P2 1 g - & R0 L Fgp R0 g
-TI-ZT (R"IX)“fH(nH...} . (3.2. 1)

Velocity Components (Schlichting Data)

The velocity components are derived from the stream function:

uw = (85/8y) = (84/0n) * 2172 U}D/?‘ r-1/2 172



13 . 4 6
RS

= 2 U {xR" 1)f'l('n) - 54—, (xR 3

ioo

21,7, 10 , - ,
S8 er Y e + 2 wrTH )

o

-—1%- (xR 1)11 g+t (3. 2. 2)

Similarly, the velocity composnent v is:

v = - B§/8x; (3.2, 3)

In Schlichting's work one can find another form for the function v, (p. 149,
 Equation(9. 20a))which, after inserting the corresponding values for the

coefficients ws is in perfect agreement with Equation (3. 2.4).

Final Forms of the Vorticity Component

ov/ox = - (2 v U myl/2r2 (- 22 @R £5(m)
+ 2 r™H? £ () - (33.6)(::11'1)5 £.(n)

¢ 320 er Y gt - A2 RN 8 e )

o
(3. 2.5)
@u/oy) = 20, @R U HY 2 (RN £
- (i'f-.}:xk‘IP () + ) R g'n)
S er N g m g erTY 1
- (”iszl“’ R DM ey b (3. 2. 6)



The function w, in the form

W, =% [(av/0x) - Bu/By)], = sec_l, (3.2.7)

will be superimposed upon each curve u Um-l'to illustrate the perturbed
velocity distribution in the laminar boundary layer on a circular cylinder

at the following set of angles:

o = 0% = 20°; = 40%; = 60%; = 80°%; = 90°%; =100°% = 110°.  (3.2.8)
-1 _

whered = (x R 7).

4., PERTURBATIONS
4,1, Stream Function

Thus, there have been derived the equations for the stream function,
¢ = Y{x,m) = P(x,n{y)), and the equations for the velocity components,
(u,v), in the specific flow in question, i.e., the symmetrical case of
the flow past a circular cylinder (Blasius series). From the definition
of the stré'am function bne can derive the equation of the streamlines.
Since, the stream fuﬁction gatisfies the equation of continuity, the curves,
J = constant, represenf streamlines. (Owczarek, p. 63)." The research
begins with the stream function (see Equationsl‘(3.2. 1) and (3.2.4) above):

4

2 ®%7 £,m)

v = 2 v Uy RYZ (R0t -

6 -1 .5 8 -1 .7 -1
P& R ) - 3 RN )+ gy R )
- %5 (R-lx)11 fll (n) + ... . } = constant. (4.1.1)

Put in this form, the function ¢ is a function of two variables, (x,n), or
(X,7),x = x R_l {dimensionless), or (x,y), since = constant y, where

the constant is a dimensional number. Thus, both the coordinates

(x,n) appearing in the representation of the function ¢, Equation {4.1.1)

are dimensionless, and only the coefficient (2 v U R)I/Z standing in

front of { ... } has the dimensions of sz sec:-1 z;os it should be. The

part of the stream function in the braces, { ... }, must be kept constant

in order that the stream function be constant (condition for the streamlines).

" In other words, the conditipn for streamlines appears in the form:



®5 1, () - 5 ®R0% 50+ g ®R750° 150)
- % (Rglx)? f7{n) + ... = constant; {4.1.2)
and one may group the above terms in the following manner:
(RS0 f, ] - 14 @R ) + 02 ® 7% g5m)]

1

1 ® 57 ) B @57 fm] - L1 ®70 6 o)

-J| oo

= constant = C . (4. 1. 3)

Obviously, there are infinitely many possibilities for dividing the constant
appearing on the right hand side of Equation (4.1, 3) among the infinitely
many terms of the series appearing on the left hand side of the same
equation. For illustrative purposes, the following scheme is proposed:
the constant C is divided into "m'' equal parts, where '"'m' is equal to

the number of terms on the left hand side of (4.1.3); each term is assumed
to be equal to Cm_l; and (R_Jx) =¥;:

Xf(n)=C m-L;

4 ~3 _ -1,
-5 @’ ) =CmT

%_, ®)° f{n) = C m-L; (4.1. 4)

- @ ) =cmh

5 @7ty = cm™h
and so on

although there may be other alternatives, one of the conclusions of the
system of equations, (4.1,4), is that, in the first form of (4. 1. 4), both
the variables, (x,7m), or any logical combination of these variables such
as the product or the ratio are assumed to be constant. Agéin from the
rmany possible combinations, which may and probably do occur in the

actual, physical conditions, the following combination are selected for

10



purely illustrative purposes:.

X n = constant = C,, (4.1.5)

-1)1/2.

[(;_)n'q] = constant; n =y R“1 (2 U _Rv (4.1.6)

The first possibility, Equation (4.1.5), will be discussed in more detail,
As can be seen from Equation {4. 1. 5) this is an equation of a hyperbola.
Consequently, in the case under consideration, the simplest possible
gebmetrical form of a streamline in the (x,y) space is a hyperbola,
Equation (4. 1. 5).

4,2, Elementary Geometrical Characteristics of the Hyperbola
The geometrical characteristic of hyperbola are collected and presented

in order to use them 1in the present work, thus eliminating the need for

outside references. The standard form of a hyperbola is:
x a =y b =13 (4.2.1)

where the axis, x,lintersects the hyperbola at the vertices A—1 and AZ;

the segment Al, - AZ is the transverse axis; both branches of hyperbola

are symmetrical with respect to (A1 AZ)’ one part being below and another
above the axis; the y axis does not intersect the hyperbola since the center
of the coordinates (x,y) is located in the center between Alland AZ'

From Equation {4.2.1), if 2 = b, the hyperbola is equilateral, and if the
asymptotes are perpendicular to each other, the hyperbola is ”rectalngular. "
The equation of a regtangular hyperbola in which its asymptotes are

referred to as coordinate axes is:

xy:%a'z:A. ' (4. 2. 2)

a2=bz=2A,

and is located in the first and third quandrants., For such a hyperbola

one has x y = -}Z— a2 {first and third quadrants), = - %az (second and
fourth quandrants);
1 .
cemi-axes: a=b=(2a)?; | (4.2.3)
cZ:a2+bz=4A; c:ZAl/z; (4. 2. 4)

11



1/2
coordinates of foci: (=2A / : O) {ZAI’/Z, 0); {4, 2. 5)
coordinates of vertices: [(bZA)l/z,, 0] ; [(ZA)I/Z'9 0] ; (4. 2.6)
eccentricity: e =c¢ a™l: 21/2 ; {4.2.7)
) . . -1 1/2
distance of the center to directrix: ae = A : (4. 2. 8)
equation of directrices: x = AI/Z, or X = =A1/2' H (4. 2. 9}

equation of the asymptotes: x -y =0, x+y=0jorx =y, x = -y (4.2.10)

Consequently, equation (4.1.5) is the equation of a rectangular hyperbola
in which its asymptotes are referred to as dimensionless coordinate
axes (Rglx,'q) or (x, n). This coordinate system will be used as the
basic coordinate system in further considerations, discussions and

plotting of the diagrams.

4,3. Computer Plots

The plots, included in the ?resant report refer to a solution of the
steady-state boundary layer equation in the flow past a circular cylinder
in the symmetrical case (Blasius series). In particular the plots refer
to the horizontal velocity component in the case given by u U;l as quoted

previously?.
=1 — 4 =3
uU_ :Z{xf'l(n -5 f'3(n)+...} (4.3.1)

The plots of the function of u U;l as a function of two variables are given

in the Schlichting book (p. 153) where the function u U;l is a function of

y Rm1 (U, Ry_l)l/z = (n 2.-1/2') and of¢ = xR"]‘, with ¢ being treated as a

°, 40°, 60°, 80°, 90°, 100°, 108.8°,

Similar plots have been accomplished from this research which are done

parameter in the range of ¢ = 0°, 20

automatically in their entirety from the output plotter as part of the
CDC 650 Computer System. These plots are functions of the independent
variable n varying from n = 0 up to n = 4.0, and for the values of the
_ -1
parameter ¢, ¢ =xR !

(o o} O

¢ = 10°, 20 , 70°, 80°, 90°, 100°, 110°.

Since this effort deals with the problem of the flow in a viscous

12



fluid (viscosity is defined as a transverse transfer of momentum) any
possibility of cbtaining a purely theoretical laminar flow around a
cylinder is automatically excluded, One can only talk about a quasi-
linear flow or a fiow with small disturbances due to small viscosity
pheomena. In order to make the disturbances due to viscosity visibly
more observable, the concept of disturbance in the form of the vorticity
function, w_, containing (dv/9x), and (du/dy), has been introduced which
is then supemmposed upon the ve10c1ty function, u U 1 This is done
geometrically, by means of plotting the diagrams of {u U-l) as the
functmn of m in the two dimensional Cartesian coordmate system,
(@t Yandn =y R @2 U R vy HY/2 Githé =% = (x R™Y) being a
parameter, and R being a fixed constant. Moreover, the function w
is also plotted in the same diagram and in the same coordinate system
as a function of n. Under the assumption that one is dealing with the
linear Schroedinger equation as the basic equation, the principle of
superposition can be applied and the values of the two functions u U"'1
and W, and be added geometrically for each value of the independent
var1able, mn. The final operation can then be performed for obtaining
the sum of functions. This technique has been applied and the resulting
plots are included as Appendix A of the report. It is not essentialwhich
coordinates in a‘,‘ll of the systems discussed be chosen: (x,y) or (x,v),
(x,n), (x,m), since obviously the coordinates x and X, vy and n differ
only by constants, one being dimensional and the other dimensionless,
respectively. In conclusion, one may summarize the results obtained
as follows: ‘
{a) the stream function of the flow around a circular cylinder,
located symmetrically, is given by Equation (4. 1. 1);
(b) the velocity component u is given by Equation (3. 2. 2);
(c) the velocity component v is given by Equation (3. 2. 4);
(d) the disturbance function (in form of the curl of velocity) is
. given by Equations (3. 2.5}, {3.2.6), and (3. 2.7); this is
(geometrically) superimposed upon the velocity component
function u U:Ol'
(¢) the condition for the streamlines is given by Equation (4.1.3);
(f) the simplest possible geometrical form of a streamline in

the (x,y)} or (x,n) space is the hyperbola (xn ) = CA;

13



(g) consequently, the result of the case of flow around a circular
cylinder is exactly the same as in the previous case of the
laminar flow along an infinitely long plate. A finite but very
small amount of vorticity introduced into the flow system
causes the appearance of small disturbances. These disturbances
originate at each finite element. and spread in the fluid for short
distances. In the case of the flat plate the streamlines were
parabolas whereas in the present case they are hyperbolas
as proven in Equation (4.1.5).

As in the case of a flat plate, one assumes a moving coordinate
system {x,y) or rather [ (= le),n] along each of the curves given as the
sum of [ (u U;l) + wz] , from Equation (3. 2. 2), plus Equation (3.2.7) with
Equations (3.2.5) and (3. 2. 6), supplying a series of values of the para-
meter xRDl =d = 00D 2.00, cev s 1100. Each chosen point for a certain
value of 1 is assumed to be the vertex of the rectangular hyperbola.

The moving coordinate system moves parallel to itself and to the fixed
coordinate system, [ (x Rpl), vertical axis] . The branches of the hyperbola
are located in the first and third guadrants. From both coordinate axes,

the horizontal axis (R-l x) is always horizontal and the other axis is

always vertical, By means of the proper transformation (of coordinates

if necessary) the branch of hyperbola located in the third quadrant is

being shifted along the transverse axis (A1 - AZ) so that both vertexes

Ay and AZ coincide at the vertex of the branch of the hyperbola located

in the first quadrant. Consequently, the first quadrant branch of hyperbola
is oriented from up-down and to the right; the third quadrant branch of
hyperbola is oriented from down-up and to the left; both branches meet

at their vertexes (Al at the same point as A ) and both vertexes coincide
with the point chosen on the curve [ (u U ) + W ] The two branched hyperbolas
in question are traced at a number of points a.long the curves | {u U ) tw, 1
and their pcnnts of intersections are located. The sections of streamhnes
(hyperbolas) between two found points of intersection furnish the zig=zag
pattern of the path of a particle. This produces the resulting pattern of
disturbances in the flow around a circular cylinder caused by the injection

of the vorticity geometry into the regular pattern. These zig-zag patterns
are traced in a few cases., The data used in the computer plots are the same

referred to previously:

14



U, = 200 km hour™! = 5555.55 cm sec™;

= 0,149 sz sec-l.
4.4, The Plots

The first set of plots refers to the flow around a circular cylinder

in the symmetrical case. The velocity distribution, (u U;l), is taken
as a function of {x Rnl) for various values of the coordinate mn, considered
to be a parameter. The value of m for 20 values is taken to be {n =
y R™ (ZUwR -1 1/2

n =.0.2, 0.4, 0.6, vcuy cuers 3.8 =4,0; (4.4.1)

In this approach no disturbances are superimposed upon the flow. The
~ 20 plots included at the end of the present report are based on the values
of the function of {u U ) as taken from Equation (3.1.8) or {4.3. 1).
For a certain number of points of these functions the streamlines are
plotted as double branched hyperbolas, and the points of inters ect ions
of these hyperbolas are found; the sections of streamlines between the
points of intersection are interconnected thereby displaying the zig-zag
_pattern as the path of a particle. The results show that the Zig-zag
pattern, which indicates the existence of some disturbances in the boundary
layer, appears even in the flow .without the introduction of any outside
disturbance such as vorticity. This can be expected in this kind of flow.
It seems desirable to point out that one may question the accuracy and
the precision of the graphical results and of the plots in the neighborhood
of x R_l equal to 2.0. This may be partly justified since it must be kept
in mind that: (a) the present calculations were done primarily for
illustrative purposes, and for providing general conclusions giving
insight into the particular points and pecularities of the problem needing
more emphasis, and (b) the point in question (R“1 x = 2) lies outside the
region of the separation of the flow and consequently the characteristic
properties of the flow at this partlcular point cannot be measured with
precision,

The second set of plots is based on the curve u U;l plus a disturbance

with resultant curve:

-1 ‘
uU_~ + w, = resultant curve; (4. 4, 2)
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on each curve (u Uc; 1) taken from the first set of plots there is super-

imposed the disturbance curve in the form of w, as the function of 7.

Each graph therefore clearly shows two curves: one describing the value

of u U;l as the function of n and the second curve describing the vorticity

function, W, » again as the function of 7. The vertical coordinates on

these two curves are geometrically added giving the resultant curve,

Equation (4.4.2). Again ata certain number of points on this curve,

the two-branched hyperbolas are plotted and the points of intersections

of the streamlines {i. e., of hyperbolas} are located. The zig~zag

patterns of the paths of particles are traced thus giving the final results.
The third set of plots refers to the velocity v, (dimensionless) =

v U;l, Equation (3. 2. 4), which is subject to disturbances in the form of

the vorticity, w . i.e.:

v, =V U;lg v from Equation (3. 2. 4); V4 + W, = resultant function
{4. 4. 3)

Again, at a certain number of points of the curve (vd + wz) twow-branched

d

hyperbolas are plotted, the points of intersections of the streamlines
(i. e., of hyperbolas) are located, and the zig-zag patterns of the paths
of particles are traced, thus giving the final pattern.

All the plots described above and included in this report demonstrate
the existence of the zig-zag patterns in the flow in question, regardless
of whether the flow is laminar, irrotational, rotational, or there is or
is not a vorticity function geometrically superimposed upon the velocity
functions of u and v components. The existence of thezig-zag pattern
is proof that the flow is not laminar, the particle paths are not parallel
(nor quasi-parallel) lines. This is an obvious indication that there are
disturbances in the particular flow in question due to the shape (circular)
of the body around which the flow takes place. The laminar flow along a
flat plate demonstrates the zig-zag pattern. There does not exist a
laminar flow in a domain of a viscous, heat-conducting fluid flow (above
the A-transition point). This conclusion, which is in accordance with
Heisenberg's statement, has been discussed in previous reporfs. The justi-
fication for the use of summation law, association between the wave mechanics
and deterministic macroscopic fluid dynamics, and all the other aspects are

also explained in previous reports.
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5. FINAL REMARKS

A comparison of the geometry of the flow patterns of the laminar

flow past a symmetrically located cylinder (Schlichting, pp. 146-155} and

those in Technical Report No. 3 indicates a few important results:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The so-called “laminar! flow around a cylinder {symmetri-

cal case or not) is nota laminar but is a flow with disturbances;
Disturbances are always present in the so-called 'laminar"
flow due to the transverse transfer of momentum (viscosity);
The zig-zag paths appear always in the so-called "laminar"
flow, however small they may be since streamlines are

always there;

The "streamlines' in the ""laminar" flow are actually the

mean value paths of the real zig-zag paths of the particles;

" due to the fact that zig-zag paths are small (small amplitudes)

and due to the physiological aspects they are seen by the
naked human eye as continuous lines (the streamlines);

The above traced zig-zag paths seem to be very ''regular”
whereas the oscillograms obtained from the oscillographs
placed in a turbulent jet (see Technical Reports No. 1 and 2)
demonstrate that often the realistic zig-zag paths are
irregular; a certain regularity in zig-zag paths may or may
not appear in the "'periodic' sense. This demonstrates that
"local'irregularities (jumps, sharp steep ''mountains't,
sharp, steep ''valleys") have their origins and are due to
other reasons and phenomena not yet discussed (interference,
inter ~correlation);

When the zig-zag paths are very "even', regular and of small
amplitudes, a zig-zag path may be seen by the naked human
eye as one thick ""streamline', as cne thick ray; a light, a
ray of light, which is also a wave;

The problem of interference and inter -correlation is discussed

in Technical Report No. 1.
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The First Set of Plots

The function (u U;l} as the function of (x R~ 1) for various

values of the parameter n = 0.2, 0.4, cees 4,0,

No disturbances,
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The Second Set of Plots

tw, ) as the function of {x R~ ) for various values

The function (u U-
0.2 6.4, ..., 4.0. The function u U l

of the parameter n
dimensionless, the function W, e sec-l. Curl represents the dis-
Since the dimensionless

turbances superimposed upon the function u U .
velocity and the disturbance have different dimensions, one has to assume

that the plots are performed in time-frozen conditions.
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The Third Set of Plots

The function (vd + disturbance), V4=V U;l, as the function of
(x R-l) for various values of the parameter n =0.2, 0.4, ...,
4,0, The function VgV U;l ig dimensionless , the disturbance,
equal to W, o is superimposed upon the dimensionless velocity

function, vy = ¥ U;l. Time is frozen.

——

69



2.0
3L.0
¥.0
29,9
24.0
27.0

%.0

25.0
24.0
23.0
22.0
21.0
20.0
1%.0
18.0
17.0
1.6
15.¢
1.0
13.0
12.9
1.0
10.0
9.0
B0
7.0
k.0
5.0
4.0
3.0
2.0
1.0

1.0

- -2.0
3.0
4.0
50

NN

KEY

1 DISTURBANCE. - .BUM = BN

LXAR - 8.8~ 35N

1 UNIT HYPERBOLA = LICM = _LBIN

ETA= 0.2

VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

I
i

—_

)
DG

Wl

il 321 &3

PREPARED 2 & A

| WIER

71

, _5,_»"‘T]Ii| L]
e e I S T L I A U R O S

X/R =

PRECEDING PAGE BLANK NOT FILMED



———

Ay, DISTURBANCE
f

2.0
310 j
= TRV
.0
2H.0
21.0
.0
23.0
2.0
23.0
22.90
2.0
234
7.0
ISRY
17.G
.0
1.
4.0
13.0
12,5
1.0
10.6
8.0

H.0

VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
. |

1 DISTURBANCE = E4M - (25NN
LXA - 5591 - 35

L UNTT HYSEREQLA = .LICH = . LkIN
ETA- DU

7.0
b0
3.0
4.9
30
iy |

2 (LRI =28

SR o T ) 1 1
2.0 DO oo alatoln) oo o e - SEE I L[
30
woo PRLPARED B 4 kANYA WY D8 WIERANG K T

0 R

T
T

72



DISTURGANCE

Yt

3.0
3.0
0.0
4.0
2.0
27.0
2.0
23.0
2.0
3.0
22.5
21.0
0.0
19.0
18.3
17.G
k.G
13.0
.0
13.0
120
L2
0.4

1.0

8.0

7.0

k.0

5.0

.0

AL

ERY

LG

RS

KEY

L DISTURBANCE = HuM - . 2BIN

L XA -8HM- 35N
L UNIT HYRERBOLA = ul(M =
ETA- Ob

AbIN

WELGCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

il 10z GE O | G0

PREPARED BY §. KaNYA ANDLD.

WIERANGA




BISTUREANC,

U+

L»J“
oo

[N B I S .
el

|9 B slie

—_

L0
A0

ERL

2.0

— MELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

KEY

L DISTURBANCE -
LXAR = B59M-

HiM = AN
391N

L UNIT HYPERBOLA - LICM - JGIN

ETA- 0.8

PREPARED RY &

g 1O 10} 07

KANYS AND 1) WIERENGA

On

74

bt

e



%2.0
3L.e
3.0
2.0
2B.0
21.0
.0
23.0
4.0
3.0
224
21.0
2.0
15.0
8.0
17.0
1.0
13.0
1.9
13.0
12.0
110
10.0

0.0 (01l

L DISTURBANCE - Hu(M =
RHAM - 39N

L XA -

AN

L NIT HYRERBOLA = LlCH = LBIN

ETA- 1.0

PREPARED BY &

Gl Q3 0

. KANYA AND D" WIERENGA

{JH

ajn

75

fs
u

1

Lik

l T

_=-‘

"n-—-

L2 145 Lk l

VELGCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

KEY

lunn-: -'5-.=

T et

F— I-A -
=

JH'



DISTURBANCE

J

-w_q..__..}

320
il.0
.43
.0
28.0
27.0
2.0
23.0
2.0
23.0
2¢.0
2L.0
0.0
18.0
8.0
1.0
1.0
150
14.0
13.0
12.0
11.0
RS

.0

KEY

1 DISTURBANCE = .Bh(H - \23IN

L XA = BAM- 15N

L UNIT HYPERRGLA - ul(M - 1IN
ETA- 1.2

~ VELGCITY DISTRIBUTICN IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

90 10 |03 QL

PREPARED BY £ KANYA AND D WIERENGA

w T ’H'H' T
05 10 107 "0k T0a e Tl P T ) Ll | L R
| a“‘ ._—M m

‘{

76



324
A.a
0.0
A.0
8.0
21.0
2.0
23.0
240
23,0
22.9
21.0
20.0
17,0
18.G
1.6
1b.G
13.0
4.0
13.0
12.0
11.0
10.0

————

—
—

etk b o

KEY

1 DISTURBANCE = .th(M = .25IN
LXAR = B8M = 3.9

1 UNIT HYPERROLA = .LICM = | LRIN
ETA- L4

|

n

09 0k Q0.7 0.8

FREPARED BY &, KANYA AND D, WIERENGA

0.4

77

IR M il

1.0 1t

H

VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

il

AR

LIWJ. [-‘ J 1 hin !




Hﬂ TS 0 S R el LS S

2.0
3.0
30.0
20.C
8.0
21.0
£b.0
2.0
24.0
3.0
220
210
20.0
"/
8.0
L7.G
k.0
13.0
140
1a.c
12.0
Ll.C
10.6

1.0

1.0
&0
3.0
4.0
3.0

2.8

0.0
-1.0

o

TN

.0

TVELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

KEY

L DISTURBANCE. - .B4(M - 23IN

L XA - 8.4M - 3.5

L UNTT HYRERROLA - .LICM - - LkIN
ETA- Lk

PREPAIE D BY 5 GANYA AND Dy TERENGA

78



o
o]

v, +

3.0
3.0

0o

29.0
28.0
21.0
2b.0
23.0
2.0
231
22.0
21.6
20.0
15.0
8.0

YRy

1b.6
15.C
1.0
13.0
12.0
1.0
15.0

1.0

BT

7.0

1

t. 0

3.0

—

L[] ]

—

EEEEEENEEEEENS NN

KEY

! DISTURBANCE = .BkQM - 25IN °
L XM= B.AM = 35N

L UNIT HYPERBOEA = .LICM = LhIN
ETA= L8

VELGCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

T

il

_hooleiol e o 09 0k 0.7

PREPARED BY 5. KANYA AND D WIERENGA

|

1A

0.9

79

]

1.0 11

1Lt

T

et



DISTURGANCE

U&t*

a0

0.0 |

;B‘" —VELCCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CTRCULAR CYLINDER
21.0 KEY

2.0

25 0 1 DISTURRANCE - L = 23N

. 'n VXA -BSHM -390

1 UNIT HYPERBOLA = LICHM = ILIN
ETA- 2.0

i0

[t

Ja ]

[0 R v A T
i TR e T st B afe B s

e
o

-
=

A0

na
)

1
0.0
o S
A I L
= ML
4.0 PREPARED BY 5 KANYA AND D LTERENGA X =

a0

80



2.0
3.0
3.0
;:E VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
2.0 Y |

2:.0 . :
250 1 DISTURBANCE = .M = . BIN
LXAR - 89M= 35N

L UNIT HYPERBOLA = 4lCH = L IbIN
ETA- 2.2

2,0 |
220 __|
20
210 |
00 _|
190
BO |
70 _|
b0 |
150 |
.0
3.0 —
20 |
g
100 |
9.0 .
BO |
7.0 ]
b ]
5.0 |
-
3.0 - - , )

5
| tﬂlll[lll?l]ll!T

03 0L 03 0k 07 04 08 L0 11 12 L3 LW 13 1k 17 LBGLA

1o 4 Ul

-2.0 0 (ol
30 | _
0 __|  PREPARED BY S. KANYA AND D. WIERENGA | R L —

L
g1



TURRANCE.

15

3y

<+ .0

w0

20

.6 2

K ——

.0

afl

3.0

VELOCITY DISTRIBUTION IN THZ BOUNDARY LAYER ON A CIRCULAR CYLINDER

KEY

L DISTURBANCE = BbM < 23N
LX/R = 85 - 35N
1 UNIT MYPERBCLA - WM < LN

2.0
B R
Q.G
R L
20 G
3.0

N —1
ULk ____t

S o

A L R e
altlnz 53 qgo 009 0L A7 08 00 L0 LD 2 L3 i n9 ol L7 LA AR

'\

PREPAREN PV & KANYA AND D, W IFRENGA XMt —

82



20
a0 |
nNo .
o VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
20 |

a0 | .

- | DISTURBANCE = LM = 25N
LXA = 6.504 = 3.5

2.0 — | NIT HYOERBOLA = LUCH = JbIN

3.0 _1  Eme2b

20 __|
200 |
20.0
19.0
1B.0
17.0
5.0
15.0
14.0
3.0
120 _|
o |
100 |
9.0
BO
70 __|
O . ' : —
5.0 __| Tt -
M- - ( | ]
3.0 -

2.0

L

T O

0.0 s

e | ix} I A D A

20 __bolojlio2 03 0L 05 06 07 G 08 L0 41 L2 L3 14 L5 Lb L7 58 i@z
3.0 |
L0 PREPARED BY S. KANYA AND D. WIERENGA | X =

=

-5

83



REANCE.

ST

’X%fé' DI

20
.0 |
.G
M0
P R
210 L
bl
25.0

P
a0 |
2.0 ]
200
00
190 ]
1= A
g
b0 ]
106

g

Bmoe |
120
Lo
0o |
90 __|
Ro )
7.0
B0
a.r 2
TR I
2.0 |
2.0 —
0.0

L0 ]
O R |
S R U
w
.0 4

p!
y

KEY

1 DISTURRANCE. = . Eu(M - _23IN
LXR - 5.9 - 35N

LUNIT HYRPERROLA = ui(M = iBIN
LTA- 2.8

VELGCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIACULAR CYLINDER

- - o I 3 --W;
1 +--—i~
0T T TN
702 03 0w 09 9k 07 4K 08 L0 L b LG L T?’.L_[ﬁ 2.
PREPATED BY & KANYA AND D WIERENGA M —

84



e rm— ,Vav_',..u.w AFL A L N ey

RN

VELCCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

KEY

L DISTURBANCE = .bu(M = 29N
LXAR - BA3 - 391N
LONIT HYPERBOLA - LICM = [ LGIN

ETa- 3.0
- S+
_ " R W |
T | T

1 A A O O R

2 03 0w 6% 0k 07 08 09 10 LU 12 13 1bu 19 e L7 1H
PREPARED By 5. KANYA AND D WIRRENGA XA o

85



——

DISTURSANCE.

d’.tu

)

42.0

- VELOCITY DISTRIBUTION IN THE ROUNDARY LAYER ON A CIRCULAR CYLINDER

g
00 ]
2.0

B0 ]
ern
b0 |
230
2.0 |
20 |
20 |
210 |
A0
s MR
Wo
7.0 |
o !
150 |
o |
30 |
2.0
Wo
0.0 |
9.0
hoo |
0
O
3.0 )
W
&0 4 I
2.0 %
0.0

L8 ]
20 .00
0
MY P_]
an |

KEY

L DISTURBANCE. = BL(M = 22N

L XR = 849N - 290

L ONIT HYOERBOLA = wltM -+ falN
ETA= 4.2

R T T T

SN0 0% 0w 09 0w 0.7 94

<J

PRIPARLD BY S WANYA AND D WIERENGA

g

86

Lol be L3 be 19 o Llwe L7 Lm0 24



MELGEITY DISTRIBUTION IN THE BOUNDARY LAYER ON A EIHCULAH CYLINDER

27.0 Y - .

%0 1 DISTURBANCE - b = . 251N
CLXAR - BAM - 35N

L INIT HYPERBOLA = 0lCH = LbiN
23.0 ETA= 3.0

b. [
5.0
4.0
3.0 ‘ :

20

SR

"

o T“ T T T T T T TTT
o0 D60l 02 5% 8L 0N 0k 07 OB 08 Lo Ll 12 L3 LL LS Lw L)
SN

Ly PREFARED BY & KANYA AND D WIERENCA ' | X/ -

2.0

87



S UHEANE

v

J L]

32.0

— MELGCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

e
.0
2.0
O
210 |
250 |
2.0 |
a0
3.0 |
200 |
200 |
200 _ |
IR
8o 1
o
ha D ]
530
Wo
120
120 ]
e
wao |
500
0.0
6|
B ]
R S
w il ]
500 T
o0 |
I
00 N
1.0 —]
ERAN
w2
90 L

KEY

L DISTURBANCE = B4(M - 23N

L XA - H5M - 39N

L UNIT HYPERBOLA - lCM - JBIN
ETA- 4.b

-] y )

. &‘
+I )

VA S . - ., e e
ninn T T T
g2 a3 0. o9 ga T S O N U S S S R ST U B S TR RN

FRLPATED B 8 ANYA AND D LFRINGA

88



el

T |
00 | N
o VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCLLAR -EYLIND%T /
270 |y 4
%0 _ | - )

- | DISTIRBANCE - HLQH = 25N | . / 1

] LWA = RS - 38N

200 —1 ] UNIT HYPERBOLA - ulCM = hiN

20 | fT 38

20 |

ap

0o | fF

1|\e |
’ -

Bo |

7.0 | .

o | -

60 . 1

wo | p

EX . T X -

EX ]

un - :

6.0 -

a5 | B

Bo ] RS

o

LG

50 |

.

S'UW—""']L

iRy Nl

D el A I A S N R O
an 000 02 53 0L 08 0B 00 04 08 L0 L1 L2 L3 Lié L5 Lu L7 L
pp

o L SREPARED 7% S KANYA AND D WIERENGA X/F R

89

1A

2



V., 4 DISTURSAaNE

0 LR
a0
00
A0 |
i R
210 ¢
b0
a0
e !
e L
2.0 |
200
D0
1.0
18.C
v |
W |
e
o
15.0

ol

uwe

VELCCLTY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR € ‘[I?

ST

20 L ).l’i‘i)i N T T T U TR L O N e O S O PR UL TR B P

—_

KEY T

1 DISTURBANCE = blM = 29N

LXA -~ AAM - 39N

5 UNIT HYOERROLA = WICM = fbIN —
ETA- 0.0 B R

" o
_ A —_—

T

San|

PHLDARED % KANYA AN D7 WTFIENGA KA

20



APPENDIX
1. OTHER POSSIBLE FORMS

Wentzel (see References) cites the Schroedinger -Gordon wave

equation, which has the form:

. 5 _

(0 -;i) b o(x,t) =0, (1.1)
- _ - A
D:; az/axzv = vz - zaz/at , (1.2)
=1 : '

where
v=1, 2, 3, 4, ' (1.3)
Xy Xy, X = space coordinates, (1.4)
x4=ic‘t, ’ : {1.5)

it is known that the Broglie complex wave functions
- 2 2 1/2
exp {i(kx F[p° +k ct]/} (1.6)

are particular solutions of the wave equation, (1.1). The scalar con-
stant, uhcﬂl, represents the rest mass. of the respective particles.

It turns out', indeed, that the stationary states of quantized fields
o‘beying thé field equations, (1.1), represent systems of particles with
the rest mass ;uhc‘"1 (Wentzel, p. 22).

As is known, the association between quantum mechanics and
macroscopic hydrodynamics in the classical sense was proposéd by
Irving Madelung in 1926. Exactly in the same year, Schroedinger
announced his famous wave mechanics equation under the name of
vamplitude equation." Madelung applies the "amplitude equation' of
Schroedinger to the derivation of the equations of motion of the hydro-
dynamic mediam in the classical sense; the conditions and restrictions
superimposed upon the Scilroedinger equation and next superimposed
by Madelung upon the hydrodynamic system in question and the manners
of overcoming these difficulties are of the following nature: |

{a) The macroscopic hydrodynamic system in question when
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moving in one direction should be free from the action of
the curl. Of course one can use another system for the
curl separately and add the results.

(b} The Schroedinger equation refers to the amplitude and
wave phenomena of one, single electron only. To use it
in the sense of the macroscopic fluid dynamics, one has to
propose some sort of generalization of the Schroedinger
equation to a group or cluster of elements or molecules.
Three such possible cases referring to the three possible
groups of elements, h, m, were discussed in the present
research.

In that respect, the writer repeats the principles of the method from
Methods of Quantum Field Theory in Statistical Physics, by A. A,
Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Institute for
Physical Problems, Academy of Sciences, U.S5.5.R., revised English

edition, translated and edited by Richard A. Silverman:

""In recent years, remarkable success has been achieved in
statistical physics, due to the extensive use of methods
borrowed from quantum field theory. The fruitfulness of
these methods is associated with a new formulation of
perturbation theory, primarily with the application of
'Feynman diagrams.' The basic advantages of the diagram
technique lies in its intuitive character: QOperating with
one-particle concepts, we can use the technique to determine
the structure of any approximation, and we can then write
down the required expressions with the aid of correspondence
rules. These new methods make it possible not only to solve
a large number of problems which did not yield to the old
formulation of the theory, but also to obtain many new re-
lations of a general character. At present, these are the
most powerful and effective methods available in quantum
statistics.

There now exists an extensive and very scattered journal
literature devoted to the formulation of field theory methods

in quantum statistics and their application to specific problems.
However, familiarity with these methods is not widespread
among scientists working in statistical physics. Therefore,

in our opinion, the time has come to present a connected
account of this subject, which is both sufficiently complete

and accesgsible to the general reader."

The present writer uses Feynman's {(Nobel Prize) exact technique with
the correspondence rules properly adjusted to the macroscopic fluid
dynamics in two dimensions. The three-dimensional problems are not
attacked, as yet, and have to be attacked in the future.
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2. HEISENBERG OPERATORS
2. 1. Preliminary Remarks

There exists another formalism in attacking the problems in the
field of quantum mechanics, i. e., Heisenberg operators. This technique
is not used for the time being in the presént report and for this reason it
will be only briefly mentioned here. May be in the future the writer may
propose a method of application of Heisenberg operators to the problem

which is under discussion in the present report.

2. 2. Remarks on Operators
Suppose that the function f(x) has a power series expansion:

+x2:E +x3f + ... (2.2, 1)

f(x)=f0+xf1 > 3

then, we can define the operator f{A) by:

3
2+Af3+... : {2.2.2)

fA)=f +Af, + A%
o 1
for example, the operator exp (AA) is:

LaZ o3y tads ... (2. 2. 3)

exp (VA) = 1+ AA +12(21)

it may be convenient now to introduce the proper notation used in the
vector algebra:

a column vector is denoted by: ]-g:> H
a row vector is denoted by: <\If| H
examp'les:

column vector:

W
o> = o (2.2.4)
kby :
a row vector:
<¥| = (Y ¢;) , (2. 2. 5)

where * stands for complex conjugate; the scalar product of a row

vector <&| and a column vector |¥ > is equal to:
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<> = o g+ ¢;¢Y:<m¢>* ; (2. 2. 6)

if |¥> has unit length then:

%+ ILlinZ = 1 (2.2.7)

this is called the normalization condition. As an example consider the
following case: all beams of light are superpositions of many
beams consisting of one photon each, one may turn his attention to the
polarization properties of single photons. It is relatively easy to
discover the probability rules for one photon from the knowledge of the
behavior of classical beams. The general laws of quantum mechanics

are just generalizations of these rules. For one photon one has (Baym,

p- 3):

EIPV = 8nkuw ; (2. 2. 8)
where:
E = E{r,t) = electric field vector;
V = volume;
I = h(Zn}_li _
w = the angular frequency.

One defines the '"state vector'' of the photon polarization by:

W
e > = i (2. 2. 9)
Yy
and by writing:
b, = (V8 wing)” 11/2 E_ (2.2. 10)
Yy = [V(Bn-h'w)—l]l/z E_; (2,2.11)

the ]\IJ > vectors are vectors in a "complex" two-dimensional space,
their components being complex numbers, From Equation (2. 2.7) it
follows that |¥ > has unit length and:

IZ.

2
| +[¢Y = 1, (2.2, 12)
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In fact the state vectors are indepéndent of the volume V and depend only

on the state of polarization of the photon. For example, if:

1 exp({ia)
I‘I’ > = = - (2. 2.13)

N2 lexp {ia)

then the photon is polarized at 45° to the x-axis. A knowledge of the
!\I’>_ vector gives us all the information we can obtain about the state
of the polarization of the photon.

Some special examples of similar vectors are:

1
| X»> = ( ) : x-polarization; (2. 2. 14)
0
0
| ¥y> = ( ) - ; y-polarization ; (2.2.15)
1 .
1 1 ‘
[R> = — ) ; right circular polarization; (2.2.16)
N2 M
. 1 1
S L> = V_“_ ( ) . left circular polarization. (2.2.17)
Jz M- ) .

Let us associate with each column vector ] ¥ > a rowvector < \I‘l

which is defined by:

<o | = W lp;’;) , (2. 2. 18)

where % stands for complex conjugate, We may define some operations
like the scalar product (discussed already above): scalar product of a
row vector. <& I and a column vector |¥ > :

ahe

<®|¥> = ¢

x V- +¢*¢y - <" (2. 2. 19)

x Yy
the known ﬁormalization condition requires for the vector |¥>:

<y |¥> =1; | ' - (2.2.20)
ciéarly: |

<X|x> :<y|y>’ = 1: (2. 2.21)
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<R|R> = <L|L> = 1; (2.2.22)

the vectors |x> and 'Y > are orthogonal, i.e., perpendicular, in the

sense that:

<x|y> = 0. {(2.2.23)

The vectors |X> and \y> form a basis, since any ‘\Ii> vector can be
written as a linear superposition of them:
—_— X — -
T > = = g x> 4 ¢yly> ; (2. 2. 24)

Yy

they are orthogonal, they satisfy the normalization condition, and they
form the "orthonormal' basis. Similarly, the set |R> and |[L>

form an orthonormal basis, since we can always write:

-1 +1
l\It> = pr - _lii}f_:/__fx |R> + :bx_kj__q:!_ |L>. (2. 2. 25)
Y 2 2
Yy

We can regard any arbitrary polarization as a coherent (logically
consistent) superposition of x and y polarization states, or equivalently
as a coherent superposition of right and left circularly polarization states.
Let us return to the problem of passing a beam through an x-polaroid;
The classical rules tell us to regard the beam as a superposition of an
x-polarized beam and a y-polarized beam, and that the effect of a
polaroid is to throw away the y-polarized component and pass only the
x-polarized component. The absolute value squared of the amplitude
of the beam gives us its energy before it passes through, and the
absoclute value squared of its x- component give us its energy after it
passes through. The fraction of the beam that passes through is given
by equation:

- -

B |° [E |+ |Ey|2] e PLIEPTT (2. 2. 26)
as we know, guantum mechanically the fraction (2. 2. 26) gives us the
probability of one photon with the initial polarization passing through the
polaroid. Written in terms of |L|J > , Eg. (2.2.26) is the "probability':
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probability = ju 1 L+ lo, T 1=l 2= f<xlol>*. @227

Thus <x['> is the amplitude of the x-polarized component of o>,
and its absolute value squared is the probability that the photon in the
state |& > passes through the x-polaroid. We call <x|¥ > the
'probability amplitude'" for the photon to pass through the x-polarizer.
Next, consider passing light through a prism that passes right
circular light but rejects left circular light. To calculate the probability,
we write the beam as a coherent sum of right circularly polarized and
left circularly polarized light, in terms of the state vectors. Then
<R}r> is the amplitude of the component passed through the prism and
|<R|¥> |2 is the probability that a photon in the state lr > will pass
through the prism that passes only the right circular polarized light.
Thus the general rule is that if we have a prism that passes only light
in the state {® >, rejecting light in states orthogonal to l@> , then the
probability amplitude that a photon in the state [#¥> will pass through

the prism is:

<@ |¥> 4 (2.2.28)
and the probability that the photon passes through is:
2 ‘ .
|<® |v>{" . (2. 2.29)

Notice that the probability is independent of the phase of jr> or [@>.

2.3. Equations
Above, we defined the operator f(A]) as:

i 2 3 |
HA) = £k Aty AP AT L (2.3.1)

An application of an operator (2.3, 1) to any ''state vector," Equation

(2. 2.9), say, causes a transformation of this vector. The operator,
composed of the right and left circular polarizations, is usually denoted
by the symbol R(8). In general, if we transform a vector ]‘If> by R(8),
the new components of |¥> will bear little resemblance to the old
components. Let us ask if there are any state vectors that when

operated vpon by R(8) are at most multiplied by a constant:
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R(O)|E>=Cg>. (2. 3.2)

If 2 vector satisfies a relation like this it is called an "eigenvector' of
R(6), and the number C is called the "eigenvalue’ of R{0) belonging to
the eigenvector in question. Analogously, one can talk about the "eigen-
states" of an operator. If la> is an eigenstate of {(A), Equation (2. 3. 1),

with eigenvalue a, then operating on la> with f(A), one gets:

2 3
f(A)a> = (y+AL +A f2+Af3+“.,)|u>
2 3
= (f0+af1+afz+af3+m)]a>
= fla}|a> . (2. 3. 3)

The above operation emphasizes clearly that la> is an eigenstate of the
operator f(A) with an eigenvalue f(a). The eigenstates of an operator A
form the so-called "complete'' set of eigenstates of A; one of the conditions,

to be satisfied by the set in question is the following one:

1 = Z la > <al; (2.3.4)

a
the eigenstates of A can always be chosen so that a complete set of A,

they form is Hermitian. Operating on Both sides of Equation (2. 3. 4) with
f(A) one finds from Equation (2. 3. 4):

fH(A) = Z fla)la><al . (2.3.5)

(03

In fact, one could take this {i. e., Equation (2. 3. 5)) as the equation
defining f{A) in terms of the eigenstates of A; it is not necessary for "f"
to have a power series expansion to be a usable definition. For jillustrative

purposes, one can define a delta function of an operator, 6(A-x), by:

S{A-x) = E 5(a~x) |a><a} s (2.3.6)

a

where X is number {Baym, p. 135},
To complete the explanations of the notation, the writer puts down

a few more notations used in the text below. Let the letter ''£" denote
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the length in the z direction, say, on which length some changes in the
states of a phenomenon may occur. Let the incident state in a phenomenon

in question be denoted by the symbol given below:
incident state = |e > ; (2.3, 7)

the distance £ changes the incident state |e> into the state:

le> - exp (ikel)le> ; (2. 3. 8)

where:

-1
ke = wave number; {~ cm );

example in the electric field:

—- _ Q ) .
Ex(r,t) = Ex cos (kz - pwt + o.x) ; (2. 3.9)

Ey({-’,t) = E; cos (kz - wt+al); (2. 3. 10)

k = 2 h-l = wave number; ~{cm 1);

w = angular frequency ; (~ sec’ 1); |

period of a vibratory motion = time required for a complete vibration;
frequency = number of .complete vibrations, or cycles, in a unit of time;
the frequency is numerically equal to the reciprocal of the period;

A\ = wave length of the harmonic wave = distance between successive
points at which the wave differs in phase by 2m, or the distance between
maximum displacements or crests; Gypr Gy = the phases; phase is a
term stating where the body is at any instant in its vibrations, and what
its direction of motion is; the wave numbers with subscripts denote:

- 5 TS
ke wn, ¢ s~ cecm T); (2.3.11)

1

-1, . -1,
o -Wn_c s~ em ) (2. 3. 12)

k

1

where n,, o, are integers. The wave numbers often do not have any
special names.

If the phenomenon in question takes place on the length 2", then
the difference in phase of an "e wave' between its point of entry and its
point of departure will be "kei ", Similarly, an ""O wave' changes phase

by_”koﬂ". The time factor exp(- iwt) is the same for both states (of

99



polarization, say) and does not effect their relative phase. In Equation
(2. 3. 8) the incident state |e> is changed on the distance ¢; this implics

that {as mentioned alrveady in Equation (2. 3. 8)):
|e> - exp (i keﬁ)le> ; (2. 3. 13)

as it is seen, the function, which introduces (causes) the changes in the
states is assumed to be in the form of the expohential function, exp (i keﬂ Y

Similarly, and incident {0> state changes into

0> —exp (i kofz)|o > (2. 3. 14)

the state |0 > is associated with the wave number k o, i.e.,:

state lO > ; wave number kO =wng ¢ L ; {2.3.15)
let us define the wave number '"matrix' by:
K=k le> <e|+k;[0><0]. (2. 3. 16)

The Hermitian adjoint, K+, of the matrix K, Equation (2. 3. 16), is the
matrix;
i e
<leJx> <'3r]K|x>
+

K = y . (2. 3. 17)
<x[Kly>" <yKly>

It may happen that in some cases (see Baym, p. 33):
K = K ; (2. 3, 18)

K is then said to be Hermitian.

As an application of operator functions, one may cite the following
example and result:

Suppose that [¥(0})> is the state of a system at time t = 0; then

at another time t, the state of the system is given by the equation:

ho(t) > Z exp {- i Et—l-fl)lE><E|\If(O)> , (2. 3.19)
E

where the sum is over a complete set of energy eigenstates of the Hamiltonian,

H, of the gsystem.
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The row vector <¥(t}| is given in terms of <3{(0)] by:

<ot)] = <W0)| (explHt¥ )

1l

- <0(0)] exp (iHEF D), (2.3.20)

where the hermiticity of H is used (see Baym, p. 136). Using Equation
{2. 3. 5), Equation (2. 3. 19) is simply:

[Ht) > = exp (- i Htir 1) [0)> ; (2.3.21)

equations (2. 3. 19) and (2. 3. 21) are only valid if H does not explicitly
depend on time {Baym, p. 135). The expression [Z(t)> in this form

clearly solves the Schroedinger equation:

in 2> gy . (2. 3. 22)

2. 4. Heisenberg Representation
On may be often interested in knowing how expectation values of
operators, in the state |\I’(t)> , change in course of time, If A is an

operator, then its expectation value at time t is:

<A> = <¥t) A [e(t) > . (2. 4. 1)

Assume A not to depend on time explicitly, Using Equation (2. 3.20) and
(2.3.21) one gets:

<A>t = <¥(0)|exp (i Htdr I)AEXP(+1 Htb ll‘I'(0)> ; (2. 4.2)

if we define a time-dependent operator A(t) by:
Aft) —exp (i Hth 1) A exp (- i HE & 1), (2. 4, 3)
then we can also write:
<A> =<¥0) lA(e) [w(0) > . (2. 4. 4)

In this equation one can regard the time development of <A>t as occurring

because the operator changes in time, while the state remains the same at all
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times. This way of regarding the time development of the system is called
the '"Heisenberg representation' or "Heisenberg picture.'" The other
way of looking at the time development, as in Equation .( 2.3.22 ), where
the operators remain constant in time, but the states change according to
Equation ( 2.3.22 )}, is called the '"Schroedinger representation' (or
picture). Att = 0, the states and operators are the same in both repre-
_ séntations. Both representations give the same results for time dependent
rexpectation values. We can solve for either the time dependence of the
states in the Schroedinger representation, or for the time dependence of
the operators in the Heisenberg representation.

In the present report the writer applies the Schroedinger represen-
éation to the problem proposed and outlined by Madelung, i.e., the
association between the quantum mechanics and macroscopic hydro-

dynamics.
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